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1 Introduction

In the present paper, which is an extended and appreciably augmented version of the work
Guseynov et al. (2019), we propose an analytical approach for solving the 3D unsteady-state
boundary-value problem for the second-order parabolic equation with the third type bound-
ary conditions in two-layer rectangular parallelepipedic domain. Such type problems arise
in particular at study of metal concentration dynamics in the peat blocks (for instance, see
Teirumnieka et al. (2015); Kangro et al. (2014); Teirumnieka et al. (2011); Orru & Orru (2006);
Brown et al. (2000) and respective references given in these).

Mathematical statement of the considered problem is taken from the article Teirumnieka
et al. (2015), where the problem was solved by combination of the two approaches: firstly,
the averaging method in the vertical direction (i.e. in height) and two horizontal directions
(i.e. in width and in length), and, then, the obtained 2D problems have been solved by the
standard/classical analytical methods. As opposed to the combinational approach suggested in
Teirumnieka et al. (2015), in the present paper, we do not use approximation methods at all
(basically, result of application of the averaging method always is approximate).
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2 Mathematical formulation of problem

Denote by Ωix i-th (i = 1, 2) layer of two-layer peat block, which has shape of rectangular
parallelepiped (see Fig. 1):

Ωix
def
≡
{
x = (x1, x2, x3) ∈ R3

∣∣ xj ∈ [0, Lj ] , j = 1, 2;
(i− 1)H1 ≤ x3 ≤ (i− 1) (L3 −H1) +H1} , i = 1, 2.

Now we formulate a mathematical model describing the dynamics of metal concentration in a
two-layer peat block: it is required to find functions ci (x, t) : Ωix × [0, tEND] → R1, (i = 1, 2) ,
which satisfy

• diffusion equations with sources

∂ci(x, t)
∂t =

3∑
j=1

Dij
∂2ci(x, t)

∂x2
j

+ fi (x, t) , (x, t) ∈ intΩix × (0, tEND] , (i = 1, 2) ; (1)

• initial conditions
ci (x, t)|t=0+ = ci0 (x) , x ∈ Ωix, (i = 1, 2) ; (2)

• the following boundary conditions given:

− at the trailing wall in the form of von Neumann condition

∂ci(x, t)
∂x1

∣∣∣
x1=0+

= ci1 (x2, x3, t) ,

(x/{x1}, t) ∈ Ωix/{x1} × [0, tEND] , (i = 1, 2) ;
(3)

− at the front wall in the form of Robin condition[
Di1

∂ci(x, t)
∂x1

+ λi1ci (x, t)
]∣∣∣

x1=L−
1

= ai1 (x2, x3, t) ,

(x/{x1}, t) ∈ Ωix/{x1} × [0, tEND] , (i = 1, 2) ;
(4)

− at the left-side wall in the form of von Neumann condition

∂ci(x, t)
∂x2

∣∣∣
x2=0+

= ci2 (x1, x3, t) ,

(x/{x2}, t) ∈ Ωix/{x2} × [0, tEND] , (i = 1, 2) ;
(5)

− at the right-side wall in the form of Robin condition[
Di2

∂ci(x, t)
∂x2

+ λi2ci (x, t)
]∣∣∣

x2=L−
2

= ai2 (x1, x3, t) ,

(x/{x2}, t) ∈ Ωix/{x2} × [0, tEND] , (i = 1, 2) ;
(6)

− at the lower (by i = 1) and the upper (by i = 2) bases in the form of Robin condition[
Di3

∂ci(x, t)
∂x3

+ (2i− 3)λi3ci (x, t)
]∣∣∣

x3=(i−1)+L−
3

= ai3 (x1, x2, t) ,

(x/{x3}, t) ∈ Ωix/{x3} × [0, tEND] , (i = 1, 2) ;
(7)

• matching conditions given at the bedding interface

((i− 1) (D13 − 1) + 1) ∂i−1c1(x, t)
∂x3

∣∣∣
x3=H−

1

= ((i− 1) (D23 − 1) + 1) ∂i−1c2(x, t)
∂x3

∣∣∣
x3=H+

1

,

(x/{x3}, t) ∈ Ωix/{x3} × [0, tEND] , (i = 1, 2) ;
(8)
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Figure 1: Schematic representation of two-layer peat block in the form of rectangular
parallelepipedic domain.

• all 12 consistency conditions linking the initial and boundary functions from the con-

straints (2)-(7): such as ∂ci0(x)
∂x1

∣∣∣
x1=0+

= ci1 (x2, x3, 0) ,
∂ci0(x)
∂x1

∣∣∣
x1=0+

= ci1 (x/{x1}, 0) ,
etc.

In the mathematical model (1)-(8) it is assumed that all numerical parameters Li > 0
(
i = 1, 3

)
,

Hi > 0 (i = 1, 2) , Dij > 0
(
i = 1, 2; j = 1, 3

)
, λij > 0

(
i = 1, 2; j = 1, 3

)
, tEND > 0, and

all functions except functions c1 (x, t) and c2 (x, t) , which stand for the desired metal concen-
trations, respectively, in the first and second layers of the peat block, are a priori given.

In (1)-(8) some specific denotations are used, whose meaning is explained below: Ωix/{xj} =
Ωix/{xj} represents the corresponding face (when xj = 0 ) of i-th (i = 1, 2) layer of two-layer
peat block; intΩi, x means the interior of the set Ωi, x; denotations g (y)|y=A− and g (y)|y=A+

should be understood respectively as the left and right limits of the function g (y) at point y = A,
i.e. g (y)|y=A∓ = lim

y→A∓
g (y) .

Remark 1. If in the mathematical model (1)-(8) we assume that:

(a) ci1 (•) = ci2 (•) ≡ 0, (i = 1, 2) ;

(b) boundary functions aij (•) ,
(
i = 1, 2; j = 1, 3

)
do not depend on time t,

then the model (1)-(8) will completely coincide with the mathematical model (1.1) from Teirum-
nieka (2015), in which the physical interpretations of all the initial data - numerical parameters
and functions are exhaustively described. Therefore, in this paper we will not describe the phys-
ical meaning of the initial numerical parameters and functions of the model (1)-(8): they have
the same meaning as in Teirumnieka et al. (2015).

Remark 2. Let us pay attention to the initial conditions (2), which mean that in each layer
the initial concentration of impurities is distributed by its own distinctive law. Such a case is
an atypical case, since when modeling and studying the majority of dynamic transport processes
in heterogeneous media with lumped factors, it is usually assumed that the distribution of the
initial concentration (or initial temperature, etc.) is subordinate to the same law for all layers
of the considered layered medium (both anisotropic medium and isotropic medium). The above
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indicated non-typical initial condition is the first essential feature of the problem considered
in Teirumnieka et al. (2015) and in this paper. The second feature (less significant) of this
problem is that both layers of fine-pore medium are anisotropic layers, each layer having its own
distinctive anisotropy. Finally, we note that if the problem under consideration did not have
these two features, then it would be a trivial problem, finding an analytical solution of which is
studied in the framework of the usual course “Equations of Mathematical Physics” for students
(Tikhonov & Samarsky, 1990).

3 On two approaches to solve the stated problem using
an analytical method

The mathematical model (1)-(8) can be solved by two different approaches. The first approach is
a more universal approach for solving wide classes of initial-boundary value problems in layered
regions with layers, whose physical, chemical, etc. characteristics are different. The main idea
of the first approach is to perform the following procedures:

Procedure 1. By artificially introducing a non-existent/missing boundary condition of the
first kind (or of the second kind) at the upper boundary of the first layer Ω1x (i.e. at point
x3 = H−

1 ), for example, like

c1 (x, t)|x3=H−
1
= u (x1, x2, t) , (x1, x2, t) ∈ Ω1x/{x3} × [0, tEND] ,

we obtain complete initial-boundary value problem for the desired function c1 (x, t) , the so-
lution of which by the Green’s function method is easy to express in an analytical form con-
taining yet an unknown function u (x, t) : Ω1x/{x3} × [0, tEND] → R, i.e. we have c1 (x, t) =
Ξ1 (. . . , (Au (x1, x2, t))) , where A is a corresponding Fredholm integral operator.

Procedure 2. Similarly, by artificially introducing a non-existent/missing boundary condition
of the first kind (or, respectively, of the second kind) at the lower boundary of the second layer
Ω2, x (i.e. at point x3 = H+

1 ), for example, like

c2 (x, t)|x3=H+
1
= ϑ (x1, x2, t) , (x1, x2, t) ∈ Ω2x/{x3} × [0, tEND] ,

we will have a complete initial-boundary value problem for desired function c2 (x, t) , the so-
lution of which by the Green’s function method is also easy to express in an analytical form
containing yet an unknown function ϑ (x, t) : Ω2x/{x3}× [0, tEND] → R1, i.e. we have c2 (x, t) =
Ξ2 (. . . , (Bϑ (x1, x2, t))) , where B is a corresponding Fredholm integral operator.

Procedure 3. Since matching conditions (1) take place, we find that in the previous two
procedures, artificially introduced boundary functions u (x, t) and ϑ (x, t) , are connected by
relation

u (x, t) = ϑ (x, t) , (9)

if artificially introduced boundary conditions are conditions of the first kind; or by relation

D13u (x, t) = D23ϑ (x, t) , (10)

if artificially introduced boundary conditions are conditions of the second kind.
Procedure 4. Since taking into account (9) or (10) we have c1 (x, t) = Ξ1 (. . . , (Au (x1, x2, t))) ,

c2 (x, t) = Ξ2 (. . . , (Bu (x1, x2, t))) , the use of the matching condition from (8), which was
not used in establishing the relationship (9) or (10), leads to the Fredholm integral equation
of the first kind for finding the artificially introduced boundary function u (x, t) . Applying
the Tikhonov regularization method (Tikhonov& Arsenin, 1977; Andreyev & Guseynov, 2013)
to the obtained Fredholm integral equation of the first kind, we find its regularized solution
u (x, t) = uReg. (x1, x2, t) , where x1 ∈ [0, L1] , x2 ∈ [0, L2] , t ∈ [0, tEND] . Finally, taking into
account the found solution u (x, t) = uReg. (x1, x2, t) in analytical expressions for c1 (x, t) and
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c2 (x, t) completely determines the desired functions: c1 (x, t) = Ξ1 (. . . , (AuReg. (x1, x2, t))) ,
c2 (x, t) = Ξ2 (. . . , (BuReg. (x1, x2, t))) .

Remark 3. As is was already mentioned at the beginning of this section, the above described
approach, consisting of procedures 1-4, is a more universal approach, and this universality lies in
its sufficiently wide applicability to the most diverse problems of mathematical physics, in which
the considered region is a heterogeneous medium. At the same time, as we have seen, in the
course of applying this approach, one has to solve an inverse ill-posed problem: in our case, this
problem is the Fredholm integral equation of the first kind. It seems to us that this circumstance
is the reason for the relatively little knowledge and rare applications of this elegant approach to
problems of this kind.

The essence of the second approach consists of applying method of separation of variables
and constructing the Green’s function (for instance, see (Tikhonov & Samarsky, 1990) that is
one of the best mathematical textbooks ever written). This method of solving initial problems
(a Cauchy problem, when the region in which the process is studied is an unbounded region),
boundary-value problems (in the case when the steady-state process is studied, or the process
is studied at a time sufficiently far from the initial moment of the process) and initial-boundary
value problems is a more ”traditional” approach in the sense that this technique is, firstly,
thoroughly studied in almost all courses of equations of mathematical physics and/or partial
differential equations, and, secondly, is widely used in the study of various kinds of mathematical
models described in the language of initial, boundary and initial-boundary problems for partial
differential equations, in particular, for hyperbolic, parabolic and elliptic types of differential
equations. In this paper, the second approach is chosen as the analytical method for solving
the mathematical model (1)-(8) – the method of separation of variables and construction of the
corresponding Green’s function.

4 Application of the method of separation of variables,
and construction of the corresponding Green’s functions

So, let us consider the initial-boundary value problem (1)-(8), and try to find its solution by
applying the method of separation of variables. To do this, we first formulate, as is customary
in the method of separation of variables (Tikhonov & Samarsky, 1990), two auxiliary boundary-
value problems – the problem AP1 and the problem AP2, in each of which the equation is
homogeneous.

4.1 Formulation of two auxiliary boundary-value problems

Auxiliary problem AP1. It is required to find the function 0 ̸≡ c1 ( x, t ) : Ω1x ×[ 0, tEND ] → R1

that satisfies:

• homogeneous equation

∂c1 (x, t)

∂t
=

3∑
j=1

D1j
∂2c1 (x, t)

∂x2j
, (x, t) ∈ intΩ1x × (0, tEND] , (11)

• heterogeneous initial condition

c1 (x, t)|t=0+ = c10 (x) , x ∈ Ω1x, (12)

• homogeneous boundary conditions

∂c1 (x, t)

∂x1

∣∣∣∣
x1=0+

= 0, (x/{x1}, t) ∈ Ω1x/{x1} × [0, tEND] , (13)
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D11
∂c1 (x, t)

∂x1

∣∣∣∣
x1=L−

1

+ λ11c1 (x, t)|x1=L−
1
= 0, (x/{x1}, t) ∈ Ω1x/{x1} × [0, tEND] , (14)

∂c1 (x, t)

∂x2

∣∣∣∣
x2=0+

= 0, (x/{x2}, t) ∈ Ω1x/{x2} × [0, tEND] , (15)

D12
∂c1 (x, t)

∂x2

∣∣∣∣
x2=L−

2

+ λ12c1 (x, t)|x2=L−
2
= 0, (x/{x2}, t) ∈ Ω1x/{x2} × [0, tEND] , (16)

D13
∂c1 (x, t)

∂x3

∣∣∣∣
x3=0+

− λ13 c1 (x, t)|x3=0+ = 0, (x/{x3}, t) ∈ Ω1x/{x3} × [0, tEND] , (17)

• as well as two conditions

c1 (x, t)|x3=H−
1
= c2 (x, t)|x3=H+

1
, (x1, x2, t) ∈ [0, L1]× [0, L2]× [0, tEND] , (18)

D13
∂c1 (x, t)

∂x3

∣∣∣∣
x3=H−

1

= D23
∂c2 (x, t)

∂x3

∣∣∣∣
x3=H+

1

, (x1, x2, t) ∈ [0, L1]× [0, L2]× [0, tEND] ,

(19)
where the function c2 (x, t) is defined in the domain Ω2x × [0, tEND] and is a nontrivial
solution of the problem AP2 stated below.

Auxiliary problem AP2. It is required to find the function 0 ̸≡ c2 (x, t) : Ω2x×[0, tEND] → R1

that satisfies:

• homogeneous equation

∂c2 (x, t)

∂t
=

3∑
j=1

D2j
∂2c2 (x, t)

∂x2j
, (x, t) ∈ intΩ2x × (0, tEND] , (20)

• heterogeneous initial condition

c2 (x, t)|t=0+ = c20 (x) , x ∈ Ω2x, (21)

• homogeneous boundary conditions

∂c2 (x, t)

∂x1

∣∣∣∣
x1=0+

= 0, (x/{x1}, t) ∈ Ω2x/{x1} × [0, tEND] , (22)

D21
∂c2 (x, t)

∂x1

∣∣∣∣
x1=L−

1

+ λ21c2 (x, t)|x1=L−
1
= 0, (x/{x1}, t) ∈ Ω2x/{x1} × [0, tEND] , (23)

∂c2 (x, t)

∂x2

∣∣∣∣
x2=0+

= 0, (x/{x2}, t) ∈ Ω2x/{x2} × [0, tEND] , (24)

D22
∂c2 (x, t)

∂x2

∣∣∣∣
x2=L−

2

+ λ22c1 (x, t)|x2=L−
2
= 0, (x/{x2}, t) ∈ Ω2x/{x2} × [0, tEND] , (25)

D23
∂c2 (x, t)

∂x3

∣∣∣∣
x3=L−

3

+ λ23 c2 (x, t)|x3=L−
3
= 0, (x/{x3}, t) ∈ Ω2x/{x3} × [0, tEND] . (26)

Remark 4. As it was noted in Remark 2, in the problem studied in this work (and also in
Teirumnieka et al. (2015)), each of the two layers has its own distinctive law of distribution
of impurities concentration at the initial moment of time t = 0. That is why, in the auxiliary
problem AP2, the initial condition (21) is present: if the distribution of the initial impurity
concentration for both layers obeys the same law, i.e. c (x, t)|t=0+ = c0 (x) , ∀x ∈ Ω1x ∪ Ω2x,
then in the auxiliary problem AP2 the initial condition (21) should not be present.
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4.2 Partial investigation of the first auxiliary boundary-value problem

First of all, we note that the use of the phrase “partial research” in the titles of the current and
next subsections is related to the interconnectedness of the auxiliary problems AP1 and AP2:
as it will be seen in subsections 4.2 and 4.3 of this section, a full research of AP1 is impossible
without research of AP2, and vice versa.

So, first consider the AP1 problem, a non-trivial solution of which will be sought in the form

c1 (x, t) = T1 (t)
3∑

j=1

X1j (xj), (27)

where the essence of the requirements X1j (xj) ̸≡ 0, j = 1, 3 and T1 (t) ̸≡ 0 is obvious.
Taking into account representation (27) in the equation (11), we get

T ′
1 (t)

T1 (t)
=

3∑
j=1

D1j
X ′′

1j (xj)

X1j (xj)
. (28)

Since the left side of equality (28) depends only on the time variable t and the right side depends
only on spatial variables x = (x1, x2, x3) , equality (28) is possible only if both sides of it are
equal to the same constant, which we will denote by −µ1, without making any assumptions
regarding the sign of the constant µ1.

So, instead of (28) we can write the following two equations:

T ′
1 (t) + µ1T1 (t) = 0, (29)

3∑
j=1

D1j
X ′′

1j (xj)

X1j (xj)
+ µ1 = 0. (30)

First we deal with equation (30), and then we return to equation (29). Alternately differentiating
equation (30) with respect to variables x1, x2 and x3, we obtain

d

dxj

(
D1j

X ′′
1j (xj)

X1j (xj)

)
= 0, ∀j = 1, 3,

from which it follows that D1j
X′′

1j(xj)
X1j(xj)

, ∀j = 1, 3 are constants: D1j
X′′

1j(xj)
X1j(xj)

= µ1j , ∀j = 1, 3,

where µ1 =
3∑

j=1
µ1j , i.e. new constants µ11, µ12, µ13 are constituent constants of the initial

constant µ1, appearing in equations (29) and (30).
So, we obtained the following homogeneous equations of the same type:

D11X
′′
11 (x1) + µ11X11 (x1) = 0, (31)

D12X
′′
12 (x2) + µ12X12 (x2) = 0, (32)

D13X
′′
13 (x3) + µ13X13 (x3) = 0, (33)

which are related only by the fact that µ1 =
3∑

j=1
µ1j . As the constant’s µ1 sign still is unknown

to us, we also have no information about constants’ µ11, µ12, µ13 signs.
Further, the substitution of (27) to the boundary conditions (13)-(17) gives us the following

boundary conditions:
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• for the function X11 (x1) two boundary conditions:{
X ′

11 (0) = 0,
D11X

′
11 (L1) + λ11X11 (L1) = 0;

(34)

• for the function X12 (x2) again two boundary conditions:{
X ′

12 (0) = 0,
D12X

′
12 (L2) + λ12X12 (L2) = 0;

(35)

• for the function X13 (x3) one boundary condition:

D13X
′
13 (0)− λ13X13 (0) = 0. (36)

Consequently, the combination of equation (31) and boundary conditions (34), the combina-
tion of equation (32) and boundary conditions (35), and finally the combination of equation (33)
and boundary condition (36) generate the following three Sturm-Liouville problems (for instance,
see (Al-Gwaiz, 2008)), the first two of which are complete problems (in the sense that they have
a complete formulation: each of them has a second-order ordinary differential equation and two
boundary conditions are given), and the third problem is an incomplete problem (one boundary
condition is missing): 

D11X
′′
11 (x1) + µ11X11 (x1) = 0, x1 ∈ (0, L1) ,

X ′
11 (0) = 0,

D11X
′
11 (L1) + λ11X11 (L1) = 0;

(37)


D12X

′′
12 (x2) + µ12X12 (x2) = 0, x2 ∈ (0, L2) ,

X ′
12 (0) = 0,

D12X
′
12 (L2) + λ12X12 (L2) = 0;

(38)

{
D13X

′′
13 (x3) + µ13X13 (x3) = 0, x3 ∈ (0, H1) ,

D13X
′
13 (0)− λ13X13 (0) = 0.

(39)

We will have to solve all three Sturm-Liouville problems in turn (37)-(39): our goal is to find
their non-trivial solutions X1j (xj) ̸≡ 0, j = 1, 3. We will show that in the case, when µ11 ≤ 0,
the problem (37) has only a trivial solution. Indeed,

• In the case, when µ11 = 0, from (37) we obtain that X11 (x1) = Cx1, where C is a constant
that must satisfy equality D11C + λ11CL1 = 0. Since D11 + λ11L1 > 0, it is obvious, that
C = 0 and, consequently, X11 (x1) ≡ 0, ∀x1 ∈ [0, L1] .

• In the case, when from (37) we obtain that X11 (x1) = C1e
−
√

|µ11|
D11

x1
+C2e

√
|µ11|
D11

x1
, where

C1 and C2 are constants that must satisfy equalities

C1 + C2 = 0,

C1

(√
|µ11|D11 + λ11

)
= e

2

√
|µ11|
D11

L1
C2

(
λ11 −

√
|µ11|D11

)
.


From these two equalities we obtain the identity

C1

(
λ11 −

√
|µ11|D11

λ11 +
√

|µ11|D11

− e
2

√
|µ11|
D11

L1

)
= 0.
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Since it always holds that
λ11−

√
|µ11|D11

λ11+
√

|µ11|D11
< 1 and e

2

√
|µ11|
D11

L1
> 1, and, therefore,

λ11 −
√
|µ11|D11

λ11 +
√
|µ11|D11

− e
2

√
|µ11|
D11

L1 ̸= 0,

from the last equality it follows that C1 = 0. Therefore, C2 = −C1 = 0. Then we get that

X11 (x1) = C1e
−
√

|µ11|
D11

x1
+ C2e

√
|µ11|
D11

x1 ≡ 0, x1 ∈ [0, L1] .

So, in problem (37) only the case should be considered, and in this case the general solution
of the problem (37) is the following function

X11 (x1) = A11 cos

(√
µ11

D11
x1

)
, x1 ∈ [0, L1] , (40)

where A11 is an arbitrary constant.
Function X11 (x1) , x1 ∈ [0, L1] , defined by formula (40), is called eigenfunction of the

Sturm-Liouville problem (for instance, see (Al-Gwaiz, 2008) as well as (Tikhonov & Samarsky,

1990)), and it corresponds to the eigenvalue µ11 = D11

(
α1
L1

)2
> 0, where α1 is a positive root of

the transcendental equation

α1tg (α1) =
λ11L1

D11
. (41)

Since the transcendental equation (41) has an infinite number of solutions, we can say that
the Sturm-Liouville problem (37) has an infinite number of eigenvalues

µ11n = D11

(
α1n

L1

)2

> 0, (42)

to which the following eigenfunctions correspond

X11n (x1) = A11n cos

(√
µ11n

D11
x1

)
, x1 ∈ [0, L1] , (43)

and each of them is determined with precision to an arbitrary constant A11n. In (43) number
α1n is n-th (n ∈ N) positive root of the transcendental equation (41), and, hereinafter, speaking
of the ordinal numbers of the positive roots of the transcendental equation, we will mean their
ordering in non-decreasing order: α11 ≤ α12 ≤ α13 ≤ . . ..

Because of the fact that the Sturm-Liouville problem (38) differs from the problem (37) only
by the coefficients D12 and λ12, we can write, fully following the results of the study of the
problem (37) obtained above, that the eigenfunctions of the Sturm-Liouville problem (38) are
the functions

X12m (x2) = A12m cos

(√
µ12m

D12
x2

)
, x2 ∈ [0, L2] , (44)

where A12m are some constants; µ12m = D12

(
β1m

L2

)2
> 0 are eigenvalues, β1m is m-th (m ∈ N)

positive root of the transcendental equation

β1tg (β1) =
λ12L2

D12
. (45)

Now we investigate the incomplete Sturm-Liouville problem (39). It is easy to check that
when µ13 > 0 (in the case of µ13 ≤ 0 problem (39) has only trivial solution) incomplete prob-
lem (39) has general solution

X13 (x3) = A13

{
sin

(√
µ13

D13
x3

)
+

√
µ13D13

λ13
cos

(√
µ13

D13
x3

)}
, x3 ∈ [0, H1] , (46)
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which is called the Sturm-Liouville incomplete problem eigenfunction (39) corresponding to
the eigenvalue µ13 (not yet found); A13 is an arbitrary constant. To find eigenvalue µ1, 3, we
should refer to conditions (18), (19), in which another function is involved – the desired function
c2 (x, t) , (x, t) ∈ Ω2x × [0, tEND] of auxiliary problem AP2. In other words, to find the eigen-
values and the corresponding eigenfunctions of the incomplete Sturm-Liouville problem (39), we
will need to investigate the auxiliary problem AP2, which we will do in subsection 4.1 of this
section.

Recall that in the course of studying the AP1 problem (still unfinished), we found out that
all the eigenvalues of problems (37)-(39) of Sturm-Liouville are positive. Therefore, the constant
µ1 from (29) and (30), which is the sum of these eigenvalues, is also positive:

0 < µ1nm︸ ︷︷ ︸
µ1

= µ11n + µ12m + µ13

= D11

(
α1n
L1

)2
+D12

(
β1m

L2

)2
+ µ13, ∀n, m ∈ N,

(47)

where α1n and β1m are n-th andm-th positive roots of the transcendental equations (41) and (45),
respectively; constituent constant µ13 > 0, which is the eigenvalue of the incomplete Sturm-
Liouville problem (39), has not yet been found (it means that the eigenfunction X13 (x3) , x3 ∈
[0, H1] , having a formal representation in the form (46) and corresponding to this eigenvalue,
is not uniquely determined).

4.3 Partial investigation of the second auxiliary boundary-value problem

We will look for nontrivial solution of the AP2 problem in the following form

c2 (x, t) = T2 (t)
3∑

j=1

X2j (xj), (48)

where meaning of requirements X2j (xj) ̸≡ 0, j = 1, 3 and T2 (t) ̸≡ 0 is obvious.
By analogy with the previous subsection 4.2, given the representation (48) in equation (20),

we obtain
T ′
2 (t) + µ2T2 (t) = 0, (49)

3∑
j=1

D2j ·
X ′′

2j (xj)

X2j (xj)
+ µ2 = 0, (50)

where µ2 is the same constant µ1 as in equations (39), (30), i.e. µ2 = µ1 (for convenience, we
will use the notation µ2 knowing that µ2 = µ1 ).

Remark 5. The authors of this work know from experience, an inexperienced reader can easily
erroneously assume that the constant µ2 in equations (49) and (50) differs from the constant µ1

in equations (29) and (30): his erroneous assumption is facilitated by the fact that equations (11)
and (20) are different equations acting in different layers with different physical properties (to be
more exact, with different material-structural properties). Since such an erroneous assumption
will necessarily lead to completely erroneous results, we would like, just in case, to justify the
fact that these constants are the same within the framework of this remark. For this, we note
that one equation

∂c (x, t)

∂t
=

3∑
j=1

Dj (x)
∂2c (x, t)

∂x2j
+ f (x, t) ,

replaces the two original equations of (1), where:

Dj (x) =

{
D1j ≡ const. if x ∈ intΩ1x,
D2j ≡ const. if x ∈ intΩ2x,
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c (x, t) =

{
c1 (x, t) if (x, t) ∈ intΩ1x × (0, tEND] ,
c2 (x, t) if (x, t) ∈ intΩ2x × (0, tEND] ,

f (x, t) =

{
f1 (x, t) if (x, t) ∈ intΩ1x × (0, tEND] ,
f2 (x, t) if (x, t) ∈ intΩ2x × (0, tEND] ,

Consequently, the homogeneous equations of both auxiliary problems AP1 and AP2 are also
described by one equation:

∂c (x, t)

∂t
=

3∑
j=1

Dj (x)
∂2c (x, t)

∂x2j
. (51)

Next, we introduce representation

c (x, t) = X (x)T (t) , (52)

which is also one notation of two different representations (27) and (48), where

X (x) =


X1 (x) =

3∏
j=1

X1j (xj) if x ∈ Ω1x,

X2 (x) =
3∏

j=1
X2j (xj) if x ∈ Ω2x,

T (t) =

{
T1 (t) if (x, t) ∈ Ω1x × (0, tEND] ,
T1 (t) if (x, t) ∈ Ω2x × (0, tEND] .

Substitution of representations (52) into the equation (51) gives us the following equality:

T ′ (t)

T (t)
=

3∑
j=1

Dj (x)

∂2X(x)
∂x2

j

X (x)
. (53)

Since in (53) the left part depends only on the variable t, and the right side depends only on x,
we conclude that the left and right sides of (53) are equal to the same constant:

T ′ (t)

T (t)
=

3∑
j=1

Dj (x)

∂2X(x)
∂x2

j

X (x)
= −µ ≡ const. (54)

From (54) we obtain the equations

T ′ (t) + µT (t) = 0,

3∑
j=1

Dj (x)
∂2X (x)

∂x2j
+ µX (x) = 0,

which in expanded form are the following{
T ′

1 (t) + µT1 (t) = 0 if (x, t) ∈ Ω1x × (0, tEND] ,
T ′

2 (t) + µT2 (t) = 0 if (x, t) ∈ Ω2x × (0, tEND] ,
3∑

j=1
D1j

X′′
1j(xj)

X1j(xj)
+ µ = 0 if x ∈ Ω1x,

3∑
j=1

D1j
X′′

2j(xj)
X2j(xj)

+ µ = 0 if x ∈ Ω2x.

Now it is obvious that the same constant µ participates in equations (29), (30), (49) and
(50): in equations (29) and (30), which are related to the auxiliary problem AP1, this constant
is denoted by µ1 (not only for convenience: index 1 in µ1 indicates the number of the auxiliary
problem, but also for a more essential goal, which will be clear immediately after the end of this
remark), and in equations (49) and (50), which are related to the auxiliary problem AP2, the
same constant is denoted as µ2 (also not only for convenience).
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So, after an important Remark 5, let us return to the study of the obtained equations (49)
and (50). First we deal with equation (50), and then we return to equation (49). We already
know that constants and in equations (30) and (50) coincide. However, we do not have the right
to require that in three homogeneous equations of the same type

D21X
′′
21 (x1) + µ21X21 (x1) = 0, (55)

D22X
′′
22 (x2) + µ22X22 (x2) = 0, (56)

D23X
′′
23 (x3) + µ23X23 (x3) = 0, (57)

which directly follow from equation (50) (see the transition procedure from equation (30) to

equations (31)-(33)), constants µ21, µ22 and µ23, whose sum gives µ2 (i.e. µ2 =
3∑

j=1
µ2j) coincide

with the previous constituent constants µ11, µ12, µ13 (values µ11 and µ12 are already deter-
mined, and value µ13 will be determined in this subsection). The reason for this circumstance
(i.e. the fact that µ1 = µ2, but µ1j ̸≡ µ2j , j = 1, 3 ) is due to the fact that the coefficients
D1j

(
j = 1, 3

)
in equations (31)-(33)) differ from the corresponding coefficients D2j

(
j = 1, 3

)
in equations (55)-(57)). In other words, in the equations (55)-(57) constants µ21, µ22, µ23,

where
3∑

j=1
µ2j = µ2, are still unknown constants and need to be determined. Finally, we note

that equations of the same type (55)-(57) are related only by the fact that µ2 =
3∑

j=1
µ2j .

Further, the substitution of representations (48) to the boundary conditions (22)-(26) gives
us the following boundary conditions:

• for function X21 (x1) two boundary conditions:{
X ′

21 (0) = 0,
D21X

′
21 (L1) + λ21X21 (L1) = 0;

(58)

• for function X22 (x2) again two boundary conditions:{
X ′

22 (0) = 0,
D22X

′
22 (L2) + λ22X22 (L2) = 0;

(59)

• for function X23 (x3) one boundary condition:

D23X
′
23 (L3) + λ23X23 (L3) = 0. (60)

Consequently, the appropriate combination of equations (55)-(57) and boundary condi-
tions (58)-(60) again give us the following three Sturm-Liouville problems, the first two of which
are complete problems, and the third problem, just like problem (39) is not a complete problem:

D21X
′′
21 (x1) + µ21X21 (x1) = 0, x1 ∈ (0, L1) ,

X ′
21 (0) = 0,

D21X
′
21 (L1) + λ21X21 (L1) = 0;

(61)


D22X

′′
22 (x2) + µ22X22 (x2) = 0, x2 ∈ (0, L2) ,

X ′
22 (0) = 0,

D22X
′
22 (L2) + λ22X22 (L2) = 0;

(62)
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{
D23X

′′
23 (x3) + µ23X23 (x3) = 0, x3 ∈ (H1, L3) ,

D23X
′
23 (L3) + λ23X23 (L3) = 0.

(63)

Almost completely following the reasoning from subsection B in the study of problems (37)
and (38), with respect to complete problems (61) and (62) of Sturm-Liouville, we can assert the
following statements without detailed derivation:

• The complete problem (61) of Sturm-Liouville has eigenvalues

µ21k = D21

(
α2k

L1

)2

> 0, k ∈ N, (64)

to which the following eigenfunctions correspond

X21k (x1) = A21k cos

(√
µ21k

D21
x1

)
, x1 ∈ [0, L1] , (65)

and each of them is determined with precision to an arbitrary constant A21k. In (65)
number α2k is k-th (k ∈ N) positive root of the transcendental equation

α2tg (α2) =
λ21L1

D21
. (66)

• The complete problem (62) of Sturm-Liouville has eigenvalues

µ22p = D22

(
β2p
L2

)2

> 0, p ∈ N, (67)

to which the following eigenfunctions correspond

X22p (x2) = A22p cos

(√
µ22p

D22
x2

)
, ∀x2 ∈ [0, L2] , (68)

and each of them is determined with precision to an arbitrary constant A22p. In (68)
number β2p is p-th (p ∈ N) positive root of the transcendental equation

β2tg (β2) =
λ22L2

D22
. (69)

Now let us study the incomplete Sturm-Liouville problem (63). It is easy to check that when
µ23 > 0 (in the case of µ23 ≤ 0 problem (63) has only trivial solution) the general solution
of (63) is function

X23 (x3) = A23

{
sin

(√
µ23

D23
x3

)
− cos

(√
µ23

D23
x3

)
tg

(√
µ23

D23
L3 + θ

)}
, x3 ∈ [H1, L3] , (70)

where A23 is an arbitrary constant; θ = arctg
(√

µ23D23

λ23

)
.

Remark 6. The derivation of formula (70) is not difficult, but it requires a lot of calculations.
In order to relatively easily convince the reader of validity of formula (70), we propose a way of
checking the answer, i.e. substitute formula (70) into (63) and use the following formulas, the
validity of which is easily established:

X ′
23 (x3) = A23

√
µ23

D23

{
cos

(√
µ23

D23
x3

)
+ sin

(√
µ23

D23
x3

)
tg

(√
µ23

D23
L3 + θ

)}
,

X ′′
23 (x3) = A23

µ23

D23

{
cos

(√
µ23

D23
x3

)
tg

(√
µ23

D23
L3 + θ

)
− sin

(√
µ23

D23
x3

)}
,

tg

(√
µ23

D23
L3 + θ

)
=

λ23 sin
(√

µ23

D23
L3

)
+
√
µ23D23 cos

(√
µ23

D23
L3

)
λ23 cos

(√
µ23

D23
L3

)
+
√
µ23D23 sin

(√
µ23

D23
L3

) .
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Remark 7. It is easy to verify that if in the formula (70) instead of the existing constant A23

we take A23

(√
µ23D23

λ23

)
sin
(√

µ23

D23
L3

)
− cos

(√
µ23

D23
L3

)
(this is valid due to the arbitrariness of

the constant), then formula (70) will have the following form, similar to formula (46) for the
function X13 (x3) , x3 ∈ [0, H1] :

X23 (x3) = A23

{
sin

(√
µ23

D23
(L3 − x3)

)
+

√
µ23D23

λ23
cos

(√
µ23

D23
(L3 − x3)

)}
, x3 ∈ [H1, L3] .

(71)
Direct verification can easily show that the function X23 (x3) , defined by formula (71), sat-

isfies the problem (63). In the future, we will use notation (70).

Function X23 (x3) , defined by formula (70), is called the eigenfunction of the incomplete
Sturm-Liouville problem (63) corresponding to the eigenvalue µ23.

Recall that in the course of studying the AP2 problem (still unfinished), we found out that
all the eigenvalues of problems (61)-(63) of Sturm-Liouville are positive. Therefore, the constant
µ2 from (49) and (50), which is the sum of these eigenvalues, is also positive:

0 < µ2kp︸︷︷︸
µ2

= µ21k + µ22p + µ23

= D21

(
α2k
L1

)2
+D22

(
β2p

L2

)2
+ µ23, ∀k, p ∈ N,

(72)

where α2k and β2p are k-th (k ∈ N) and p-th (p ∈ N) positive roots of the transcendental equa-
tions (66) and (69), respectively; constituent constant µ23 > 0, which is eigenvalue of incomplete
Sturm-Liouville problem (63), is still unknown (it means that the eigenfunction X23 (x3) , x3 ∈
[H1, L3] , having a formal representation in the form (70) or (71) and corresponding to this
eigenvalue, is not uniquely determined).

So, within the framework of the study of auxiliary problems AP1 and AP2, by this time the
eigenvalues µ13 and µ23, remain uncertain and, therefore, same thing can be said about their
corresponding eigenfunctions X13 (x3) , x3 ∈ [0, H1] and X23 (x3) , x3 ∈ [H1, L3] ; in addition, it
is necessary to clarify the choice of constants A11n (n ∈ N) , A12m (m ∈ N) , A13, A21k (k ∈ N) ,
A22p (p ∈ N) , A23; finally, it is required to find functions T1 (t) and T2 (t) , which satisfy equa-
tions (29) and (49).

4.4 Using the matching conditions, and the complete solving the both
auxiliary problems

Recall that in the course of studying the auxiliary problems AP1 and AP2, we did not use
matching conditions (18) and (19), and now it is time to use these conditions to find eigen-
values µ13 and µ23, and redefine the corresponding eigenfunctions X13 (x3) , x3 ∈ [0, H1] and
X23 (x3) , x3 ∈ [H1, L3] , formally represented by formulas (46) and (70) (or (71)), respectively.
For this purpose, we first note that if equality

T1 (t)

3∏
j=1

X1j (xj)︸ ︷︷ ︸
c1(x, t)

= T1 (t)

3∏
j=1

X2j (xj)︸ ︷︷ ︸
c2(x, t)

,

which is equivalents to

T1 (t)
2∏

j=1
X1j (xj)

T1 (t)
2∏

j=1
X2j (xj)

=
X23 (x3)

X13 (x3)
,
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holds for ∀xj ∈ [0, Lj ] , j = 1, 2, ∀t ∈ [0, TEND] and ∀x3 ∈ (H1 − ε, H1 + ε) , 0 < ε ≪ 1,
then it means that X13 (x3) = CX23 (x3) , 0 < ∀ε ≪ 1, where C ̸= 0 is an arbitrary constant,
which for convenience we choose as A13

A23
, i.e. C = A13

A23
(such a choice of a constant is legitimate

because of its arbitrariness, and, moreover, nothing will change from such (or other) choice).
Now, having this fact, substituting representations (27) and (48) to matching conditions (18)
and (19), we obtain

A23X13 (x3)|x3=H−
1
= A13X23(x3)x3=H+

1
,

A23D13X
′
13 (x3)

∣∣
x3=H−

1
= A13D23X

′
13 (x3)

∣∣
x3=H+

1
.

Taking into account formulas (46) and (70) in these two equalities, after performing the
necessary calculations and transformations, gives us the following results: the desired eigenvalue
µ23 from the Sturm-Liouville problem (63) are found by the formula

µ23 = D23

(
γ

H2

)2

> 0, (73)

and then the desired eigenvalue µ13 from the Sturm-Liouville problem (39) is calculated by the
formula

µ13 = µ21 + µ22 + µ23 − µ11 − µ12, (74)

whose right side contains already found eigenvalues of Sturm-Liouville problems (37), (38), (61),
(62).

In the formula (73) parameter γ is positive root of the transcendental equation√
D23γ2 + ξ

γ
tg

(
γ + arctg

(
D23γ

H2λ23

))
= g (γ) , (75)

where

g (γ) =
D23√
D13

√
D13 (D23γ2 + ξ) +H2λ13tg

(
H1
H2

√
D23γ2+ξ

D13

)
√
D13 (D23γ2 + ξ)tg

(
H1
H2

√
D23γ2+ξ

D13

)
−H2λ13

,

ξ = H2
2 (µ21 + µ22 − µ11 − µ12) .

Remark 8. This note contains two important facts. The first important fact is that the pa-
rameter present in the transcendental equation (this parameter enters both the left side and the
right side of the transcendental equation) depends on the eigenvalues of Sturm- Liouville prob-
lems (37), (38), (61), (62). Since each of these four Sturm-Liouville problems has an infinite
number of eigenvalues (see formulas (42), (44), (64), (68)), it would be more correct to speak not
about one transcendental equation (75), but about a family of transcendental equations. More-
over, having {α1n}n∈N, where 0 < α11 ≤ α12 ≤ . . . ≤ α1n ≤ . . . ; {β1m}m∈N, where 0 < β11 ≤
β12 ≤ . . . ≤ β1m ≤ . . . ; {α2k}k∈N, where 0 < α21 ≤ α22 ≤ . . . ≤ α2k ≤ . . . ; {β2p}p∈N, where
0 < β21 ≤ β22 ≤ . . . ≤ β2p ≤ . . . , value of parameter ξ depends on a specific values if an ordered
quadruple (n ∈ N, m ∈ N, k ∈ N, p ∈ N) , where, generally speaking, order is important: for ex-
ample, the quadruple (1, 1, 1, 2) means that eigenvalue µ11 is calculated using the first positive
root (α11) of the equation (41), eigenvalue µ12 is calculated using the first positive root (β11) of the
equation (45), eigenvalue µ21 is calculated using the first positive root (α21) of the equation (66),
eigenvalue µ21 is calculated using the first positive root (β21) of the equation (69), and, therefore,
ξ = ξ (1, 1, 1, 2) = H2

2 (µ211 + µ222 − µ111 − µ121) does not have to match the value ξ, found by
quadruple (1, 1, 2, 1) : ξ (1, 1, 2, 1) = H2

2 (µ212 + µ221 − µ111 − µ121) , i.e. generally speaking,
ξ (1, 1, 1, 2) ̸= ξ (1, 1, 2, 1) . Finally, recall that positive roots

{
γq=q(n∈N,m∈N, k∈N, p∈N)

}
q∈N of

family of equations (75), like the positive roots of all transcendental equations in this paper, are
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arranged in non-decreasing order: 0 < γ1 ≤ γ2 ≤ . . . ≤ γq ≤ . . . , where γ1 = min γq(n,m, k, p)
n,m, k, p∈N

,

γ2 = min {γq}
n,m, k, p∈N; q ̸=1

, γ3 = min {γq}
n,m, k, p∈N; q ̸=1, 2

, etc.

The second important fact of this remark is that despite the possible negative values of the
parameter ξ, all radicands in (75) are positive. Indeed, from (73) we have γ2 = µ23

D23
H2

2 , and

taking this expression into account in the expression D23γ
2 + ξ, which causes the fear of the

negativity of the radicands, we get:

D23γ
2 + ξ = µ23H

2
2 +H2

2 (µ21 + µ22 − µ11 − µ12)

= H2
2 (µ21 + µ22 + µ23 − µ11 − µ12)

(74)
= H2

2µ13 > 0.

.
Since the transcendental equation (75) has an infinite number of solutions, we arrive at the

following results:

• The Sturm-Liouville problem (63) has an infinite number of eigenvalues

µ23q = D23

(
γq
H2

)2

, q = q (n, m, k, p) ∈, ∀n, m, k, p ∈ N, (76)

to which the following eigenfunctions correspond

X23q (x3) = sin
(√

µ23q

D23
x3

)
− tg

(√
µ23q

D23
L3 + arctg

(√
µ23qD23

λ23

))
cos
(√

µ23q

D23
x3

)
,

∀x3 ∈ [H1, L3] ;
(77)

in (76) number γq = γq(n,m, k, p) is q-th (q ∈ N) positive root of the transcendental equa-
tion (75).

• The Sturm-Liouville problem (39) has an infinite number of eigenvalues

µ13nmkpq = µ21k + µ22p + µ23q − µ11n − µ12m,
q = q (n, m, k, p) , ∀n, m, k, p ∈,

to which the following eigenfunctions correspond

X13nmkpq (x3) =

√
µ13nmkpqD13

λ13
cos

(√
µ13nmkpq

D13
x3

)
+sin

(√
µ13nmkpq

D13
x3

)
, ∀x3 ∈ [0, H1] .

(78)

So, within the framework of the study of auxiliary problems AP1 and AP2, two sub-problems
remain unfinished: the problem of finding functions T1 (t) and T2 (t) , for whose solution one,
first of all, needs to clarify/redefine formulas (47) and (72) for constants µ1 and µ2; problem
of choosing constants A11n (n ∈ N) , A12m (m ∈ N) , A21k (k ∈ N) and A22p (p ∈ N) , which
appear in formulas (43), (44), (65) and (68), respectively. We start by clarifying/redefining
formulas (47) and (72) for constants µ1 and µ2. As it was noted in Remark 5, constants µ1 and
µ2 coincide. Therefore, it suffices to clarify only the formula (47) for the constant µ1 :

0 < µ1nmkpq︸ ︷︷ ︸
µ1=µ2≡µ

= D21

(
α2k
L1

)2
+D22

(
β2p

L2

)2
+D23

(
γq
H2

)2
−D11

(
α1n
L1

)2
−D12

(
β1m

L2

)2
.

(79)

Now we clarify the problem of choosing constantsA11n (n ∈ N) , A12m (m ∈ N) , A21k (k ∈ N)
and A22p (p ∈ N) , which appear in formulas (43), (44), (65) and (68), respectively. For this we
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use the fact that the system of eigenfunctions {yn (x)}n∈ of the Sturm-Liouville problem
(p (x) y′ (x))′ − q (x) y (x) + µρ (x) y (x) = 0, ∀x ∈ (a, b) ,
ω11y

′ (a) + ω12y (a) = 0,
ω21y

′ (b) + ω22y (b) = 0,
(80)

where
2∑

j=1
ω2
ij ̸= 0, i = 1, 2; p (x) > 0, x ∈ (a, b) ; q (x) ≥ 0, x ∈ (a, b) ; ρ (x) > 0, x ∈ (a, b) ,

forms an orthogonal system with weight ρ (x) on the segment [a, b] , i.e.

b∫
a

ρ (x) yn (x) ym (x) dx = 0

for n ̸= m (Al-Gwaiz, 2008; Levitan & Sargsyan, 1991).

Since our problems (37), (38), (61), (62) are problems of the form (80) (q (x) ≡ 0 and ρ (x) ≡ 1
for all four problems), we can state that the system of functions {X11n (x1)}n∈N, {X12m (x2)}m∈N,
{X21k (x1)}k∈N, {X22p (x2)}p∈N, represented by formulas (43), (44), (65), (68), respectively,
are orthogonal systems on segments [0, L1] , [0, L2] , [0, L1] , [0, L2] , respectively. One of
the reasonable constraints on choice of constants A11n (n ∈ N) , A12m (m ∈ N) , A21k (k ∈ N) ,
A22p (p ∈ N) , which appear in formulas (43), (44), (65), (68), respectively, is the requirement
of orthonormality of systems {X11n (x1)}n∈N, {X12m (x2)}m∈N, {X21k (x1)}k∈N, {X22p (x2)}p∈N
of eigenfunctions, i.e. requirement of satisfaction of conditions

b∫
a

ρ (x) yn (x) ym (x) dx =

{
0 if n ̸= m ,
1 if n = m .

Another option (very simple, but less reasonable) of choosing constants is simply equating
them to some number, for example, to 1. In this paper, we choose the first option:

• From the requirement of satisfaction of condition
L1∫
0

X2
11n (x1) dx1 = 1 it follows that

A11n =
√

λ11
D11

+ µ11n

λ11
, ∀n ∈ N;

• From the requirement of satisfaction of condition
L2∫
0

X2
12m (x2) dx2 = 1 it follows that

A12m =
√

λ12
D12

+ µ12m

λ12
, ∀m ∈ N;

• From the requirement of satisfaction of condition
L1∫
0

X2
21k (x1) dx1 = 1 it follows that

A21k =
√

λ21
D21

+ µ21k
λ21

, ∀k ∈ N;

• From the requirement of satisfaction of condition
L2∫
0

X2
22p (x2) dx2 = 1 it follows that

A22p =
√

λ22
D22

+
µ22p

λ22
, ∀p ∈ N.

It should be noted here that we did not ensure that the orthogonal systems of eigenfunctions
{X13nmkpq (x)}n,m, k, p, q∈N and {X23nmkpq (x)}n,m, k, p, q∈N, defined by the already established

formulas (78) and (77), respectively, became orthonormal systems: this was not necessary in
this work, although it would not be difficult to ensure.
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So, the final formulas for calculating the eigenfunctions X11n (x1) , X12m (x2) , X21k (x1) ,
X22p (x2) are the following formulas:

X11n (x1) =

√
λ11

D11
+

µ11n

λ11
sin

(√
µ11n

D11
x1

)
, ∀x1 ∈ [0, L1] , ∀n ∈ N; (81)

X12m (x2) =

√
λ12

D12
+

µ12m

λ12
sin

(√
µ12m

D12
x2

)
, ∀x2 ∈ [0, L2] , ∀m ∈ N; (82)

X21k (x1) =

√
λ21

D21
+

µ21k

λ21
sin

(√
µ21k

D21
x1

)
, ∀x1 ∈ [0, L1] , ∀k ∈ N; (83)

X22p (x1) =

√
λ22

D22
+

µ22p

λ22
sin

(√
µ22p

D22
x2

)
, ∀x2 ∈ [0, L2] , ∀p ∈ N. (84)

Now we can proceed to solving the last problem in the framework of the study of auxiliary
problems AP1 and AP2 - the problem of finding functions T1 (t) and T2 (t) from equations (29)
and (49), respectively. Taking into account Remark 5, equations (29) and (49) completely
coincide: T1 (t) = T2 (t) = T (t) ; however, due to conditions (12) and (21), the function T (t)
must be different on layers Ω1x and Ω2x, i.e.

T (t) =

{
T1 (t) if (x, t) ∈ Ω1x × (0, tEND] ,
T1 (t) if (x, t) ∈ Ω2x × (0, tEND] .

As was emphasized in Remark 2, this circumstance is highly atypical and it introduces some
peculiarity to the investigated problem.

If we consider equations (29) and (49) only from the position of time t ∈ [0, tEND] , rather
than from the position of spatial variables, the solution of these equations is the function T (t) =
Be−µ·t, where B is some coefficient that is not yet defined. Since number µ (= µ1 = µ2) is
determined by finally found formula (79), we can write

Tnmkpq (t) = Bnmkpqe
−µnmkpq ·t, ∀n, m, k, p, q ∈ N, (85)

where coefficients Bnmkpq are to be determined taking into account spatial variables.
To satisfy conditions (12) and (21), in the formula (85) for the layer Ω1x there should be its

own distinctive coefficients B1nmkpq, and for the layer Ω2x there should be its own distinctive
constants B2nmkpq, i.e.

Tnmkpq (t) =

{
B1nmkpqe

−µnmkpq ·t if x ∈ Ω1x,
B2nmkpqe

−µnmkpq ·t if x ∈ Ω2x
(86)

for ∀t ∈ [0, tEND] and ∀n, m, k, p, q ∈ N.
Taking into account formula (81) for X11n (x1) , formula (82) for X12m (x2) , formula (78)

for X13nmkpq (x3) , formula (83) for X21k (x1) , formula (84) for X22p (x2) , formula (77) for
X23nmkpq (x3) , formula (86) for Tnmkpq (t) in representations (27) and (48), we obtain the fol-
lowing formula for the desired functions c1 (x, t) , where (x, t) ∈ Ω1x × [0, tEND] , and c2 (x, t) ,
where (x, t) ∈ Ω2x × [0, tEND] :

c1 (x, t) =

+∞∑
n,m, k, p, q=1

B1nmkpqe
−µnmkpq ·tX1nmkpq (x), (87)

whereX1nmkpq (x) = X11n (x1)X12m (x2)X13nmkpq (x3) , x1 ∈ [0, L1] , x2 ∈ [0, L2] , x3 ∈ [0, H1] ,
t ∈ [0, tEND] , system of functions {X1nmkpq (x)}n,m, k, p, q∈N is an orthogonal system, i.e.∫

Ω1x

X1nmkpq (x)X1NMKPQ (x) dx = 0 (88)
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if n ̸= N, m ̸= M, k ̸= K, p ̸= P, q ̸= Q;

c2 (x, t) =

+∞∑
n,m, k, p, q=1

B2nmkpqe
−µnmkpq ·tX2nmkpq (x), (89)

whereX2nmkpq (x) = X21k (x1)X22p (x2)X23nmkpq (x3) , x1 ∈ [0, L1] , x2 ∈ [0, L2] , x3 ∈ [H1, L3] ,
t ∈ [0, tEND] , system of functions {X2nmkpq (x)}n,m, k, p, q∈N is an orthogonal system, i.e.∫

Ω2x

X2nmkpq (x)X2NMKPQ (x) dx = 0 (90)

if n ̸= N, m ̸= M, k ̸= K, p ̸= P, q ̸= Q.
Obviously, the function c1 (x, t) , determined by the formula (87), satisfies all homogeneous

boundary conditions (13)-(17) of the auxiliary problem AP1, since they are satisfied by all mem-
bers of the quadruple series in the right-hand side (87); similarly function c2 (x, t) , determined
by the formula (89), satisfies all homogeneous boundary conditions (22)-(26) of the auxiliary
problem AP1, since they are satisfied by all members of the quadruple series in the right-hand
side of (89); in addition, these functions satisfy the matching conditions (18), (19), since func-
tions X13nmkpq (x3) and X23nmkpq (x3) , which are contained in each member of the quadruple
series of (87) and (89), respectively, automatically satisfy the matching conditions (18), (19)
– functions X13nmkpq (x3) and X23nmkpq (x3) were determined owing to the conditions (18),
(19). Therefore, it remains to enforce functions c1 (x, t) and c2 (x, t) to satisfy the initial condi-
tions (12) and (21), respectively.

The sought-for function c1 (x, t) , which is determined by formula (87), to satisfy initial
condition (12), we obtain:

c10 (x) =
+∞∑

n,m, k, p, q=1

B1nmkpqX1nmkpq (x). (91)

Analogously, the sought-for function c2 (x, t) determined by formula (89) to satisfy the initial
condition (21), we obtain:

c20 (x) =
+∞∑

n,m, k, p, q=1

B2nmkpqX2nmkpq (x). (92)

Let us by turns apply to (91) and (92) one of the fundamental theorems of mathematical
physics - Steklov’s Theorem on decomposability of any twice continuously differentiable function
into absolutely and uniformly convergent series by orthogonal system of eigenfunctions of the
Sturm-Liouville problem (first strictly proved in Steklov (1983); see also Levitan & Sargsyan
(1991)). Let us start with (91).

After multiplying both parts of (91) by the function X1NMKPQ (x) and integrating the
resulting equality over the layer Ω1x, we will have∫

Ω1x

c10 (x)X1NMKPQ (x) dx =
+∞∑

n,m, k, p, q=1

B1nmkpq

∫
Ω1x

X1nmkpq (x)X1NMKPQ (x) dx, (93)

where the introduction of the integral sign under the sign of the series means termwise integration
of functional series, and we have the right to do this, since according to (Il’in & Poznyak, 1980),
first, for the layer Ω1x the series (91) converges uniformly, and, secondly, we integrate each
member B1nmkpqX1nmkpq (x) of the series (91) for the layer Ω1x (here we deliberately did not
use a stronger fact – the fact of the continuity of each member of the series (91), since the
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requirement of integrability of each member of the series is sufficient, and there is no need to
require that all members of the series were continuous, as it is supposed in various textbooks on
mathematical analysis).

Since the left side of equality (93) is non-zero, then by virtue of (88) we can state that the
right side of equality (93) contains only one non-zero term that is a N ·M ·K ·P ·Q-th member
of the quadruple series, i.e. member of the series where n = N, m = M, k = K, p = P, q = Q.
In other words we will have an equality∫

Ω1x

c10 (x)X1NMKPQ (x) dx = B1NMKPQ

∫
Ω1x

X2
1NMKPQ (x) dx,

from which it immediately follows that for ∀n, m, k, p, q ∈ N there takes place

B1nmkpq =

∫
Ω1x

c10 (y)X1nmkpq (y) dy∫
Ω1z

X2
1nmkpq (z) dz

=

L1∫
0

dy1
L2∫
0

dy2
H1∫
0

c10 (y)X1nmkpq (y) dy3

L1∫
0

dz1
L2∫
0

dz2
H1∫
0

X2
1nmkpq (z) dz3

, (94)

Now we will consider (92) and act in exactly the same way as we did when considering equal-
ity (91). Namely, multiplying both parts of (92) by the function X2NMKPQ (x) and integrating
the obtained equality over the layer Ω2x, we will have the equality

∫
Ω1x

c10 (x)X1NMKPQ (x) dx =

+∞∑
n,m, k, p, q=1

B1nmkpq

∫
Ω1x

X1nmkpq (x)X1NMKPQ (x) dx,

from which taking into account (90) we will get∫
Ω2x

c20 (x)X2NMKPQ (x) dx = B2NMKPQ

∫
Ω1x

X2
2NMKPQ (x) dx,

i.e. we have obtained that for ∀n, m, k, p, q ∈ N there takes place

B2nmkpq =

∫
Ω2y

c20 (y)X2nmkpq (y) dy∫
Ω2z

X2
2nmkpq (z) dz

=

L1∫
0

dy1
L2∫
0

dy2
L3∫
H1

c20 (y)X2nmkpq (y) dy3

L1∫
0

dz1
L2∫
0

dz2
L3∫
H1

X2
2nmkpq (z) dz3

. (95)

It is not difficult to prove (Tikhonov & Samarsky, 1990) that the function c1 (x, t) defined
by formulas (87), (94) is a continuously differentiable function by a variable t in the inter-
val [0, tEND] and twice continuously differentiable function by variable x for the layer Ω1x,
which satisfies the equation (11). Similarly, a function c2 (x, t) , defined by formulas (89), (95)
is a continuously differentiable function for a variable in a segment and a twice continuously
differentiable function (twice differentiable function) for a variable t for the layer Ω2x, which
satisfies equation (20). Thus, the functions c1 (x, t) and c2 (x, t) are continuous functions for
Ω1x× [0, tEND] and Ω2x× [0, tEND] , respectively, and since these functions satisfy the matching
conditions (18), (19) (it has been proved above), they are considered to be solutions of auxiliary
problems AP1 and AP2, respectively.

Thus, the study of auxiliary problems AP1 and AP2 is entirely completed, and now we can
proceed to finding a solution for the original problem (1)-(8).
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4.5 Solving the original problem (1)-(8)

Obviously, substituting (94) in (87) and (95) in (89), we get the following representations for
the functions c1 (x, t) , ∀ (x, t) ∈ Ω1x × [0, tEND] and c2 (x, t) , ∀ (x, t) ∈ Ω2x × [0, tEND] :

c1 (x, t) =

∫
Ω1y

G1 (x, y, t) c10 (y) dy, (96)

where

G1 (x, y, t) =

+∞∑
n,m, k, p, q=1

e−µnmkpqt
X1nmkpq (x)X1nmkpq (y)∫

Ω1z

X2
1nmkpq (z) dz

; (97)

c2 (x, t) =

∫
Ω2y

G2 (x, y, t) c20 (y) dy, (98)

where

G2 (x, y, t) =

+∞∑
n,m, k, p, q=1

e−µnmkpq ·tX2nmkpq (x)X2nmkpq (y)∫
Ω2z

X2
2nmkpq (z) dz

, (99)

which are a more compact form for auxiliary problems AP1 and AP2 solutions, respectively.
Each of the above introduced functions Gj (x, y, t) , j = 1, 2 is a well-known and deeply stud-
ied Green’s function (Tikhonov & Samarsky, 1990; Levitan & Sargsyan, 1991; Abrikosov et al.,
1963; Levitov & Shitov, 2002)

G (x, y, t) =
+∞∑

n1...nm=1

e−µn1...nm ·tXn1...nm (x)Xn1...nm (y)∫
Ωz

X2
n1...nm

(z) dz
.

Our goal in this subsection is the analytical construction of the solution to the original
problem (1)-(8), using the Green’s functions Gj (x, y, t) , j = 1, 2. As we will be able to see
below, after completing the study of auxiliary problems AP1, AP2, there is no difficulty in
finding an analytical solution to the original problem (1)-(8): a more or less difficult part of the
research for the problem considered in this paper is the study of auxiliary problems AP1 and
AP2.

Let us formulate a new auxiliary problem, naming it NAP1: it is required to find solutions
to the inhomogeneous equation (which coincides with equation (1) for i = 1)

∂c1 (x, t)

∂t
=

3∑
j=1

D1j
∂2c1 (x, t)

∂x2j
+ f1 (x, t) , (x, t) ∈ intΩ1x × (0, tEND] , (100)

which satisfies the zero-initial condition

c1 (x, t)|t=0+ = 0, x ∈ Ω1x (101)

and zero-boundary conditions (13)-(17) of the auxiliary problem AP1.
We will search for solution to the NAP1 problem according to the orthogonal system of

functions {X1nmkpq (x)}n,m, k, p, q∈N already constructed by us, i.e. in the form

c1 (x, t) =

+∞∑
n,m, k, p, q=1

c1nmkpq (t)X1nmkpq (x), (102)

where the functional coefficients c1nmkpq (t) are still unknown and to be determined.
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The source function f1 (x, t) from equation (100) will also be expanded in an orthogonal
system of functions {X1nmkpq (x)}n,m, k, p, q∈N, i.e.

f1 (x, t) =
+∞∑

n,m, k, p, q=1

f1nmkpq (t)X1nmkpq (x), (103)

where the coefficients f1nmkpq (t) are calculated by the following formula (this formula is easy to
establish by analogy with the procedure for finding the coefficients (94) and (95)):

f1nmkpq (t) =

∫
Ω1y

f1 (y, t)X1nmkpq (y) dy∫
Ω1z

X2
1nmkpq (z) dz

. (104)

By substituting expansions (102) and (103) into equation (100), we will get

+∞∑
n,m, k, p, q=1

X1nmkpq (x)
{
c′1nmkpq (t)−

(
D11

X′′
11n(x1)

X11n(x1)
+D12

X′′
12m(x2)

X12nm(x2)

+D13
X′′

13nmkpq(x3)
X13nmkpq(x3)

)
c1nmkpq (t)− f1nmkpq (t)

}
= 0.

Since the resulting equality is nothing else than decomposition of the zero function in an
orthogonal system {X1nmkpq (x)}n,m, k, p, q∈N, and since the zero function can have only zero
coefficients in the decomposition, we can state that for ∀n, m, k, p, q ∈ N there will take place

c′1nmkpq (t)−
(
D11

X′′
11n(x1)

X11n(x1)
+D12

X′′
12m(x2)

X12nm(x2)

+D13
X′′

13nmkpq(x3)
X13nmkpq(x3)

)
c1nmkpq (t)− f1nmkpq (t) = 0.

(105)

Since the functions X1n (x1) , X12nm (x2) , X13nmkpq (x3) satisfy equations (31)-(33), respec-
tively, the following equality is valid:

D11
X′′

11n(x1)
X11n(x1)

+D12
X′′

12m(x2)
X12nm(x2)

+D13
X′′

13nmkpq(x3)
X13nmkpq(x3)

= − (µ11n + µ12m + µ13nmkpq)
(74)
= −µnmkpq︸ ︷︷ ︸

µ1nmkpq=µ2nmkpq

.

Taking into account this fact in equation (105), we will obtain the following ordinary dif-
ferential equation with constant coefficients for the desired functional expansion coefficients
c1nmkpq (t) of the expansion (102):

c′1nmkpq (t) + µnmkpqc1nmkpq (t)− f1nmkpq (t) = 0. (106)

For the unique solvability of equation (106), only one initial condition is required, and this
condition is

c1nmkpq (0) = 0, ∀n, m, k, p, q ∈ N, (107)

which follows from the requirement that the function c1 (x, t) , represented by the decomposi-
tion (102) satisfy the zero-initial condition (101):

0 =

+∞∑
n,m, k, p, q=1

c1nmkpq (0)X1nmkpq (x), ∀x ∈ Ω1x.

It is easy to verify that the solution to problem (106), (107) is the function

c1nmkpq (t) =

t∫
0

e−µnmkpq(t−τ)f1nmkpq (τ) dτ. (108)
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By substituting the expression (104) into (108), and then substituting the resulting expression
into decomposition (102) and carrying out simple transformations, taking into account the fact
of uniform convergence of the fourfold series (it means that we can swap the series sign and the
integral sign) we will obtain

c1 (x, t) =

t∫
0

dτ

∫
Ω1y

G1 (x, y, t− τ) f1 (y, τ) dy, (109)

where the function G1 (x, y, t− τ) is the same Green function (97), in which instead of the
argument t there is an argument t− τ.

Now let us formulate a new auxiliary problem NAP2: it is required to find solutions to the
inhomogeneous equation (which coincides with equation (1) at i = 2)

∂c2 (x, t)

∂t
=

3∑
j=1

D2j
∂2c2 (x, t)

∂x2j
+ f2 (x, t) , (x, t) ∈ intΩ2x × (0, tEND] , (110)

which satisfies the zero-initial condition

c2 (x, t)|t=0+ = 0, x ∈ Ω2x

and to zero-boundary conditions (22)-(26) of the auxiliary problem AP2.
Having carried out the necessary calculations in a similar way with the corresponding cal-

culations in finding the solution (109) of the NAP1 problem, we obtain the desired solution of
the NAP2 problem:

c2 (x, t) =

t∫
0

dτ

∫
Ω2y

G2 (x, y, t− τ) f2 (y, τ) dy, (111)

where the function G2 (x, y, t− τ) is the same Green’s function (99), in which instead of the
argument t there is an argument t− τ.

Let us summarize the intermediate results obtained by this time. Since the equations (1)
of the original problem (1)-(8) are linear equations (like the corresponding equations of the
problems AP1, AP2, NAP1, NAP2), then:

• the sum of the functions determined by formulas (96) and (109) is the solution of the
problem consisting of the non-homogeneous equation (100), nonzero-initial condition (12)
and zero-boundary conditions (13)-(17).

• the sum of the functions determined by formulas (98) and (111) is the solution of the prob-
lem consisting of the non-homogeneous equation (111), the nonzero-initial condition (21)
and zero-boundary conditions (22)-(26).

In other words, functions

cj (x, t) =

∫
Ωjy

Gj (x, y, t) cj0 (y) dy +

t∫
0

dτ

∫
Ωjy

Gj (x, y, t− τ) fj (y, τ) dy, j = 1, 2 (112)

give us a solution to problem (1)-(8) provided that cj1 (x2, x3, t) ≡ 0, aj1 (x2, x3, t) ≡ 0,
cj2 (x1, x3, t) ≡ 0, aj2 (x1, x3, t) ≡ 0, aj3 (x1, x2, t) ≡ 0 for ∀j = 1, 2. Therefore, to complete
our study, it remains to find a solution to problem (1)-(8), provided that fj (x, y, t) ≡ 0 and
cj0 (x) ≡ 0 for ∀j = 1, 2, and then, add the solution found to the right side of the formula (112).
To achieve this, we will use the following properties of the Green’s functionsGj (x, y, t) , j = 1, 2
(Levitov & Shitov, 2002), (Babich et al., 1964):
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• first, functions Gj (x, y, t) , j = 1, 2 can be represented in a multiplicative form

Gj (x, y, t) =

3∏
i=1

Gji (xi, yi, t), ∀j = 1, 2,

where

Gji (xi, yi, t) =
+∞∑
ℓ=1

e−µjiℓ·tXjiℓ (xi)Xjiℓ (yi)
z2∫
z1

X2
jiℓ (z) dz

,



if (j, i) = (1, 1) ⇒ (ℓ, z1, z2) = (n, 0, L1) ,
if (j, i) = (1, 2) ⇒ (ℓ, z1, z2) = (m, 0, L2) ,
if (j, i) = (1, 3) ⇒ (ℓ, z1, z2) = (q, 0, H1) ,
if (j, i) = (2, 1) ⇒ (ℓ, z1, z2) = (k, 0, L1) ,
if (j, i) = (2, 2) ⇒ (ℓ, z1, z2) = (p, 0, L2) ,
if (j, i) = (2, 3) ⇒ (ℓ, z1, z2) = (q, H1, L3) ,
q = q (n, m, k, p) ;

• second, for ∀j = 1, 2 the Green’s function Gj (x, y, t) is the solution of the initial-boundary
problem

∂Gj (x, y, t)

∂t
=

3∑
j=1

D2j
∂2Gj (x, y, t)

∂x2j
,

Gj (x, y, t)|t=0+ =

3∏
i=1

δ (xi − yi),

∂Gj (x, y, t)

∂x1

∣∣∣∣
x1=0+

= 0,

[
Dij

∂Gj (x, y, t)

∂x1
+ λj1Gj (x, y, t)

]∣∣∣∣
x1=L−

1

= 0,

∂Gj (x, y, t)

∂x2

∣∣∣∣
x2=0+

= 0,

[
Dj2

∂Gj (x, y, t)

∂x2
+ λj2Gj (x, y, t)

]∣∣∣∣
x2=L−

2

= 0,

[
Dj3

∂Gj (x, y, t)

∂x3
+ (2j − 3)λj3Gj (x, y, t)

]∣∣∣∣
x3=(j−1)+L−

3

= 0,

where at j = 1 problem area is a layer Ω1x, at j = 2 problem area is a layer Ω2x, function
δ (xi − yi) means the Dirac delta function; the variable y = (y1, y2, y3) participates in the
problem as a parameter, at that y ∈ Ω1y when j = 1 and y ∈ Ω2y when j = 2.

By using the above-listed properties of the Green’s function Gj (x, y, t) , j = 1, 2 we can
write the following formulas, the validity of which can be easily proved by direct verification:
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• function c1 (x, t) , which is defined as

c1 (x, t) =
t∫
0

dτ
L2∫
0

dy2
H1∫
0

G1 (x, y, t− τ)|y1=0
−c11(y2, y3, τ)

D11
dy3

+
t∫
0

dτ
L2∫
0

dy2
H1∫
0

G1 (x, y, t− τ)|y1=L1
a11 (y2, y3, τ) dy3

+
t∫
0

dτ
L1∫
0

dy1
H1∫
0

G1 (x, y, t− τ)|y2=0
−a11(y1, y3, τ)

D12
dy3

+
t∫
0

dτ
L1∫
0

dy1
H1∫
0

G1 (x, y, t− τ)|y2=L2
a12 (y1, y3, τ) dy3

+
t∫
0

dτ
L1∫
0

dy1
L2∫
0

G1 (x, y, t− τ)|y3=0
−a13(y1, y2, τ)

D13
dy2,

(113)

is a solution to problem (1)-(8) at i = 1 under conditions f1 (x, t) ≡ 0, c10 (x) ≡ 0
(i.e. with homogeneous equation (1), zero initial condition (2), and non-zero boundary
conditions (3)-(7));

• function c2 (x, t) , which is defined as

c2 (x, t) =
t∫
0

dτ
L2∫
0

dy2
L3∫
H1

G2 (x, y, t− τ)|y1=0
−c21(y2, y3, τ)

D21
dy3

+
t∫
0

dτ
L2∫
0

dy2
L3∫
H1

G2 (x, y, t− τ)|y1=L1
a21 (y2, y3, τ) dy3

+
t∫
0

dτ
L1∫
0

dy1
L3∫
H1

G2 (x, y, t− τ)|y2=0
−a11(y1, y3, τ)

D22
dy3

+
t∫
0

dτ
L1∫
0

dy1
L3∫
H1

G2 (x, y, t− τ)|y2=L2
a22 (y1, y3, τ) dy3

+
t∫
0

dτ
L1∫
0

dy1
L2∫
0

G2 (x, y, t− τ)|y3=L3

−a23(y1, y2, τ)
D23

dy2,

(114)

is a solution to problem (1)-(8) at i = 2 under conditions f2 (x, t) ≡ 0, c20 (x) ≡ 0
(i.e. with homogeneous equation (1), zero initial condition (2), and non-zero boundary
conditions (3)-(7)).

The mechanism for constructing formulas (113) and (114) is quite obvious: the first term
in formulas (113) and (114) is a solution to problem (1)-(8) under the conditions fi (x, t) ≡ 0,
ci0 (x) ≡ 0, ai1 (x2, x3, t) ≡ 0, ci2 (x1, x3, t) ≡ 0, ai2 (x1, x3, t) ≡ 0, ai3 (x1, x2, t) ≡ 0 for
∀i = 1, 2; the second term in (113), (114) is a solution to problem (1)-(8) under the con-
ditions fi (x, t) ≡ 0, ci0 (x) ≡ 0, ci1 (x2, x3, t) ≡ 0, ai2 (x1, x3, t) ≡ 0, ci2 (x1, x3, t) ≡ 0,
ai3 (x1, x2, t) ≡ 0 for ∀i = 1, 2; the third term in (113), (114) is a solution to problem (1)-
(8) under the conditions fi (x, t) ≡ 0, ci0 (x) ≡ 0, ci1 (x2, x3, t) ≡ 0, ai1 (x2, x3, t) ≡ 0,
ai2 (x1, x3, t) ≡ 0, ai3 (x1, x2, t) ≡ 0 for ∀i = 1, 2; the fourth term in (113), (114) is a solution
to problem (1)-(8) under conditions fi (x, t) ≡ 0, ci0 (x) ≡ 0, ci1 (x2, x3, t) = ai1 (x2, x3, t) ≡ 0,
ci2 (x1, x3, t) ≡ 0, ai3 (x1, x2, t) ≡ 0 for ∀i = 1, 2; the last term in (113), (114) is a solution to
problem (1)-(8) under conditions fi (x, t) ≡ 0, ci0 (x) ≡ 0, ci1 (x2, x3, t) ≡ 0, ai1 (x2, x3, t) ≡ 0,
ci2 (x1, x3, t) ≡ 0, ai2 (x1, x3, t) ≡ 0 for ∀i = 1, 2.

Thus, the function c1 (x, t) , which is obtained by summing the right parts of formulas (112)
(at j = 1) and (113), describes the desired dynamics of the concentration of metal substances
in the first layer of a two-layer peat block; the function c2 (x, t) , which is obtained by summing
the right parts of formulas (112) (at j = 2) and (114) describes the desired dynamics of the
concentration of metal substances in the second layer of a two-layer peat block.
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Remark 9. The fundamental book Carslaw & Jaeger (1959) presents a very elegant approach,
which allows in some cases to reduce initial boundary problems (with Dirichlet, Neumann, Robin
or mixed types boundary conditions) for a homogeneous parabolic equation in an anisotropic
medium

∂T (x, t)

∂t
=

3∑
j=1

Kjj
∂2T (x, t)

∂x2j
+

1

2

3∑
i, j=1: i ̸=j

(Kij +Kji)
∂2T (x, t)

∂xi∂xj
,
(
Kjj > 0 ∀j = 1, 3

)
(115)

to the corresponding initial-boundary value problems for a homogeneous parabolic equation of in
an isotropic medium

∂T (y, t)

∂t
= K

3∑
j=1

∂2T (y, t)

∂y2j
, (116)

where K is an arbitrary constant; yj = ξj
√

K
Kj

, j = 1, 3 are coordinates of the transformation

y = F (x) allowing to move from equation (115) to the equation

∂T (ξ, t)

∂t
=

3∑
j=1

Kj
∂2T (ξ, t)

∂ξ2j
; (117)

the rectangular coordinates ξj , j = 1, 3, of which are called the principal axes of equation (115),

form a new coordinate system in which the quadratic form
3∑

j=1
Kjjx

2
j+

1
2

3∑
i, j=1: i ̸=j

(Kij +Kji)xixj

turns to the form
3∑

j=1
Kjξ

2
j , where Kj , j = 1, 3 are the corresponding coefficients of this trans-

formation.

The proposed approach is guaranteed to be applicable in the following cases:

• if the considered area is not limited;

• if the considered area is bounded by planes perpendicular to the principal axes ξj , j = 1, 3
of the parabolic equation (117);

• if K2 = K3 and the considered area is bounded by planes perpendicular to the axis ξ1 and
circular cylinders whose axis coincides with the axis ξ1.

In most other cases, the boundaries of the considered area are distorted and, hence, anisotropy
cannot be eliminated Wooster (1949). Unfortunately, the elegant approach outlined above is not
applicable to the problem studied in this paper: it is also impossible to get rid of anisotropy.

The construction of the analytical solution of the problem (1)-(8) is entirely completed.

5 Conclusion

In this paper, it is studied the problem of determining the dynamics of the concentration of metal
substances in a two-layer anisotropic peat block. The work examines in detail the well-known
variables separation method for constructing an analytical solution for a mathematical model
of the studied problem. It is shown that the main difficulty is only the solution of interrelated
auxiliary problems AP1 and AP2, which are obtained from the original mathematical model
under the conditions that there are no sources in both layers, and that all boundary conditions
are homogeneous.
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